

CCC Annual Report UIUC, August 14, 2013

Prediction, Measurement, and Optimization of Mold Fluid Flow in Continuous Slab Casting with FC Mold at Baosteel

Kai Jin and B.G. Thomas

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Overall Objectives

- Improve understanding of fluid flow in the Baosteel slab-casting mold, including the effect of EMBr;
- Develop off-line CFD model to accurately model multiphase fluid flow with EMBr (prediction of flow pattern, surface velocity, etc.) and validate model by comparing with measurements at Baosteel: nailboard velocity, and bubble entrapment location;
- Study Ar gas bubble behavior: predict bubble trajectories and entrapment;
- Investigate effect of EMBr, Ar gas injection, submergence depth, SEN downward angle and casting speed on mold flow pattern and top surface velocity;
- Apply model to optimize EMBr operation in commercial slab casters, evaluate the quality of flow pattern and provide suggestions regarding operation;

Chapter 1 – Experiments (Bubble entrapment measurements at Baosteel)

Methodology of Experiment (Translation of Baosteel Bubble Summary Report^[6])

Metals Processing Simulation Lab

Casting Conditions as Table 1.

University of Illinois at Urbana-Champaign

- Samples from middle WF, ¼ WF and NF, as shown in Fig. 1.
- Milling off steel layer by layer.
- Use 35x optical microscope to examine bubbles. Record bubble number, distribution and size.
- Examine from 3 mm beneath the outer surface, after that grinded off 3 mm each time until reached 12 mm; change the grind step depth to 5 mm and mill to 22 mm. 6 layers in total. Shown in Table 2.

Table 2 Sample Mill depth and Associated layer number

Mill/Grind Dept	n Sample Layer							
(mm)	Number							
3	1							
6	2							
9	3							
12	4							
17	5							
22	6							
University of Illinois at Urbana-Champaign								

Kai Jin

3

Metals Processing Simulation Lab • Kai Jin • 4

1mm)

Experiment Result – Bubble Size (Translation of Baosteel Bubble Summary Report^[6])

In Experiment, observed bubble diar range from 0.05-1.45 mm.

In Experiment, observed bubble diameter	Table 3 Casting conditions for bubbles with diameter larger than 1mm						
d _o < 0.1 mm, 57%;	Bubble size	Casting speed	EMBr	Location	Distance From outer surface		
0.1mm < d _p <0.3mm 42.5%;	1.45	1.5	OFF	side	<2mm		
dp > 1mm 0.5% (2 bubbles, 1.45mm and	1	1.5	ON	side	<2mm		

Casting Speed 1.2m/min

Table 4 Average bubble size and their location, µm

Casting Speed 1.5m/min

2 bubbles larger than 1 mm. (1.45 mm and 1.00 mm). (observed in metallographic phase inclusion samples) casting conditions are listed in Table 3.

Bubble size distribution shown in Table 4.

Table 2 Sample Mill depth a	and Associated laver number
Mill/Grind Depth, mm	Sample Layer Number
3	1
6	2
9	3
12	4
17	5
22	6

University of Illinois at Urbana-Champaign

EIVIDI								
	Layer	1/2	1/4	Side	1/2	1/4	Side	
	1	98.67	104.90	113.90	103.48	103.48	103.48	
	2	97.33	106.40	136.60	126.50	111.60	72.50	
FC	3	90.66	86.44	87.50	81.15	90.110	75.88	
OFF	4	77.46	92.48	99.60	92.92	91.30	96.80	
	5	0	63.00	63.00	47.00	47.00	0	
	6	0	0	0	0	0	70.50	
	1	112.50	106.50	91.30	89.64	103.30	103.75	
	2	96.80	100.00	110.00	134.15	122.16	106.25	
FC	3	96.68	77.46	80.23	83.00	83.00	102.36	
ON	4	85.37	66.40	99.60	80.62	88.53	89.22	
	5	63.00	63.00	86.00	63.00	31.00	57.00	
	6	109.00	63.00	47.00	63.00	63.00	0	
Metals	Processing S	Simulation L	ab		Kai Ji	'n		

Contin		
6	asting	
	Consort	iur

Experiment Result: Plot of Average Bubble Size vs. Distance beneath Outer Surface (all in one plot)

- bubbles 1. Most larger $(d_p>100 \ \mu m)$ are in layers 1 and 2 (3-6mm).
- 2. Most medium size bubbles $(70 < d_p < 100 \ \mu m)$ are found in layer 3 and 4 (8-12mm).
- 3. All small bubbles (d_p<70 µm) are found in layer 5 and 6.
- Entrapped bubble size decrease with depth.
- Large bubbles entrapped closer to meniscus. Fewer bubbles penetrate.
- In general, small bubbles can follow fluid flow and travel down. They were entrapped at lower position.

Results Summary: Bubble Number per 100cm² vs. Distance beneath Outer Surface

Inuous

Geometry and Boundary Conditions

Solid Shell Model

- To avoid sharp shell tip, offset shell tip toward mold wall by 5mm.
- The shaded parts is the additional solid shell added into the domain.
- As a result, shell thickness at the region near the top surface is increased.
- Based on plant observation, shell thickness at the mold exit is around 19 mm, with casting speed 1.2 m/min.

$$S = k\sqrt{t}$$

 $L_{moldexit} = 0.8 \ m \text{ and } S_{moldexit} = 19 \ mm$
 $V_c = 1.2m \ \text{min} = 0.02 \ m \ \text{s}$
 $t_{exit} = \frac{L_{moldexit}}{V_c} = \frac{0.8m}{0.02m \ \text{s}} = 40 \ \text{s}$
 $k = \frac{S_{moldexit}}{\sqrt{t_{exit}}} = \frac{19mm}{\sqrt{40s}} = 3.00 \ mm \cdot \text{s}^{-\frac{1}{2}} = 0.91 \ inch \cdot \min^{-\frac{1}{2}}$

Metals Processing Simulation Lab

Governing Equation For Fluid Flow Steel and Ar Properties

Continuity Equation

 $\nabla \cdot (\rho \vec{u}) = 0$

asting Consortium

• Steel momentum equation $\rho \frac{\partial}{\partial t} (\vec{u}) + \rho \vec{u} \cdot \nabla \vec{u} = -\nabla p + \mu \nabla^2 \vec{u} + \vec{F}$

Properties	Steel	Ar
Density (kg/m ³)	7,000	0.5
Viscosity (kg/m-s)	0.0063	2.12e-5
Electrical Conductivity (S/m)	714,000 [1]	1.0e-15 ^[2]
Magnetic Permeability (h/m)	1.26*10 ^{-6 [1]}	4π*10 ⁻⁷

• Steady-State RANS Turbulence Model (*k*-ε)

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_{i}}(\rho k u_{i}) = \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{i}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right] - \rho \overline{u'_{i} u'_{j}} \frac{\partial u_{j}}{\partial x_{i}} - \rho \epsilon; \qquad \mu_{t} = \rho C_{\mu} \frac{k^{2}}{\epsilon}$$
$$\frac{\partial}{\partial t}(\rho \epsilon) + \frac{\partial}{\partial x_{i}}(\rho \epsilon u_{i}) = \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{i}}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_{j}} \right] + C_{1\epsilon} \frac{\epsilon}{k} \left(\rho \overline{u'_{i} u'_{j}} \frac{\partial u_{j}}{\partial x_{i}} \right) - C_{2\epsilon} \rho \frac{\epsilon^{2}}{k}$$
$$C_{1\epsilon} = 1.44; \qquad C_{2\epsilon} = 1.92; \qquad C_{\mu} = 0.09; \qquad \sigma_{k} = 1.0; \qquad \sigma_{\epsilon} = 1.3$$
$$\rho \overline{u'_{i} u'_{j}} \frac{\partial u_{j}}{\partial x_{i}} = \mu_{i} \left(\nabla \bar{u} + (\nabla \bar{u})^{T} \right) : \nabla \bar{u}$$

- \vec{u} Steel velocity
- ğ Gravity
- ρ Steel density
- \vec{F} Sorce term
- μ Steel dynamic viscosity
- k Turbulent kinetic energy
- ε Turbulent dissipation rate

Particle Tracking with Random Walk Model

How Many Particles Should be Injected

Parameters	Values
Sample Length, Δz	150mm
Slab Thickness, <i>L_y</i>	230mm
Slab Width, <i>L_x</i>	1300mm
Total Ar Volume Fraction at SEN, α	8.2%
Volume of Ar injected in <u>half</u> of the caster when cast Δz length of slab, V_{Ar}	2.0×10 ⁶ mm ³

There are 10 different groups of bubbles and each group have the same diameter. Group *i* has diameter d_i , bubble number N_i and volume fraction a_i . i = 1, 2, ..., 10. Then, the particle number of N_i satisfy the equation:

How to determine the value of α_i ?

Assume Ar bubble volume distribution satisfy the Rosin-Rammler distribution and the volume fraction of Ar contained in the bubbles which have diameter less than d_i is defined by $F(d_p)$.

$$F(d_i) = \frac{\begin{pmatrix} \text{Volume of all bubbles} \\ \text{with diameter} < d_i \end{pmatrix}}{\text{Volume of ALL bubbles}} = 1 - \exp\left[-\left(\frac{d_i}{\overline{d}}\right)^b\right]$$
$$\alpha_i = \begin{cases} \alpha \left[F(d_i)\right] & i = 1\\ \alpha \left[F(d_i) - F(d_{i-1})\right] & i > 1 \end{cases}$$

 \overline{d} mean bubble diameter, 3mm

b shape parameter, 4

Gas bubbles have diameter > 5mm have volume fraction Gas bubbles have diameter < 1mm have volume fraction 1 - F(5) = 0.04%

F(1) = 1%.

inuous Casting Consortium

Bubble Distribution

As stated before, there are **<u>2 Steps</u>** in the simulation:

- 1. Two-way coupled Eulerian-Lagrangian Simulation to obtain fluid field;
- 2. Particle are randomly released from inlet and the trajectories are tracked by using Random Walk Model.

 α is total Ar volume fraction at injection point which is 8.2% in this case.

In step – 2, <u>10 different groups of bubbles</u> are injected and tracked with diameter: <u>0.05</u>, <u>0.075</u>, <u>0.1</u>, <u>0.2</u>, <u>0.3</u>, <u>1, 2</u>, <u>3, 4 and 5mm</u> and their volume fraction satisfy the Rosin-Rammler distribution and are plotted in the figures above.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Kai Jin	•	19
--	---	----------------------------------	---	---------	---	----

List of Particles Injected in Post Particle Tracking Process

i	Diameter d _i (mm)	Volume per Bubble in group i (mm³)	Volume Fraction of Bubble in Group I a _i	Total Volume of Bubbles in Group i (mm³)	Number of Bubbles in Each Group N _i	Number of Bubbles Injected n _i	
1	0.05	6.54E-05	6.40E-09	1.57E-01	2,393 —	→ 2,393]
2	0.075	2.21E-04	2.60E-08	6.36E-01	2,880	2,880	
3	0.1	5.24E-04	7.00E-08	1.71E+00	3,272	3,272	$n_i = N$
4	0.2	4.19E-03	1.54E-06	3.76E+01	8,973	8,973	1
5	0.3	1.41E-02	6.66E-06	1.63E+02	11,521	11,521	
6	1	5.24E-01	1.02E-03	2.49E+04	47,564	4,756	ĺ
7	2	4.19E+00	1.39E-02	3.39E+05	80,911	8,091	
8	3	1.41E+01	3.76E-02	9.19E+05	65,022	6,502	$- n_i = \frac{1}{1}$
9	4	3.35E+01	2.70E-02	6.61E+05	19,714	1,971	-
10	5	6.54E+01	3.48E-03	8.52E+04	1,301	1,30	
Total			0.082	2.03E+06	243,551	51,660	

- Ni and α_i are calculated based on Rosin-Rammler given in the previous slide.
- The total number of bubbles need to be tracked is about 243,551 which is too large. So, the number of those larger bubbles(1mm to 5mm) are reduced by divide N_i by 10 ($n_i = N_i/10$). The number of small bubbles are kept as $n_i = N_i$.
- In later post processing, the number of tracked large bubbles will be multiply by 10.

How to Compare Simulation Results with **Experimental Results** onsortium

Data available from experiment? ---- Number of bubble captured per 100cm² at each experimental sample layer. Data available from simulations? ---- Number of bubble captured at each simulation sample layer.

nuous asting

Two Different Capture Models

- Simple capture criterion (touch=capture) is used at beginning. Particles (bubbles) are captured when they touch NF or WF.
- Advanced capture criterion is implemented and the criterion is described both in Quan Yuan's PhD thesis (2004)[7] and Sana Mahmood's Master thesis (2006)[8]. A flow chart of capture criterion is given in figure below. PDAS used in the criterion is obtained from Sana Mahmood's Master thesis (2006)[8] as well.

Forces Related to Capture Criterion

 R_p particle radius

inuous asting Consortium

- V_{sol} solidification velocity
- r_d dendrite tip radius
- h_o distance between dendrite tip and particle
- a_{o} atomic diameter of the liquid
- C_o sulfur content of steel
- D_s diffusion coefficient of sulfur in steel
- k distribution coefficient

Forces on particles [7,8]:

$$F_{B} = (\rho_{steel} - \rho_{Ar})g\frac{4}{2}\pi R_{p}$$

Buoyancy force pointing upward

$$F_{\rm lub} = 6\pi\mu V_{sol} \frac{R_p^2}{h_o} \left(\frac{r_d}{r_d + R_p}\right)^2$$

Lubrication force acts on the particle along particle's radius towards dendrite tip $r_{e}^{R} = r_{e}^{2}$

$$F_{I} = 2\pi\Delta\sigma_{o} \frac{r_{d}R_{p}}{r_{d} + R_{p}} \frac{a_{o}}{h_{o}^{2}} \qquad \Delta\sigma_{o} = \sigma_{sp} - \sigma_{sl} - \sigma_{pl}$$

Van der Waals force pushes particle away from dendrite tip

$$F_{Grad} = -\frac{m\beta\pi R_p}{\xi^2} \left\{ \frac{\xi^2 - R_p^2}{\beta} \ln \frac{(\xi + R_p) \left[\alpha(\xi - R_p) + \beta \right]}{(\xi - R_p) \left[\alpha(\xi + R_p) + \beta \right]} \right\} + \frac{2R_p}{\alpha} - \frac{\beta}{\alpha^2} \ln \frac{\alpha(\xi - R_p) + \beta}{\alpha(\xi + R_p) + \beta}$$

Interfacial gradient force push particle toward solidification front University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab

Theoretical solidification velocity is used on NF/WF

 $\alpha = 1 + nC_o$ $\beta = nr_d (C^* - C_o)$ $\xi = R_p + r_d + h_o$ $\frac{r_d V_{sol}}{2D_s} = \frac{C^* - C_o}{C^* (1 - k)}$ Kai Jin • 24

Velocity at Center line in Meniscus Surface

sting

- DPM simulation predict a close shape of V_x but the predicted V_x value is larger than the experiment. Possible reason might be that the casting speed in this simulation is 1.5m/s but in the experiment it was 1.2m/s.
- Regarding the cross flow velocity, all simulations under predict the cross flow speed. The possible reason is the flow is transient but the experimental data is only one snap shot.

Study the Effect of Capture Criterion 4 Post Particle Track Are Performed

• 4 post particle track simulations are done.

Particle Number and Size for Post Particle Track Simulations

Case	NO. of bubble Injected	Bubble Size Distribution	Capture Criterion on NF/WF
1	51,660	Constant d _p 1mm	Simple Capture
2	51,660	Constant d _p 1mm	Adv. Capture
3	47,564	Rosin-Rammler, mean d _p 3mm	Simple Capture
4	47,564	Rosin-Rammler, mean d _p 3mm	Adv. Capture

Fluid field solution for the both cases are the same, $V_c=1.5m/s$, Ar gas volume fraction is 8.2%, all simulations performed on the same grid with ~1.2 million cells.

Number of bubbles captured, casting speed 1.5m/min, without EMBr, simple capture criterion

Atinuoi Casti Con	us ing sortium	without EMBr, <u>simple capture criterion</u>											
	Lay	er Loc	ation		Sin	nulatior	<u>n</u> Result a	at WF			Exp	eriment at W	F
	Sample Layer Number	Grind Depth (mm)	Below Meniscus (mm)	Captur	re bubble & Avg. d _p	<i>N_s</i> and O.R. # 6	l Avg. d _p & Avg. d _p	Bubble I.R.	#/100cm² O.R.	Bubb captu <i>N</i> c	les red <i>N</i> a	Average d _p (mm)	Bubble #/100cm ² \overline{N}_{E}
	1	` 3 ´	25	29	0.304	6	0.275	129	27	39.2	3.9	0.103	17.4
	2	6	100	72	0.343	6	0.229	320	27	41.0	4.1	0.126	18.2
WF	3	9	225	19	0.195	7	0.196	84	31	26.8	2.7	0.081	11.9
Center	4	12	400	4	0.138	2	0.250	18	9	45.2	4.5	0.092	20.1
Region	5	17	803	2	0.150	6	0.133	9	27	9.5	0.9	0.047	4.2
	6	22	1344	2	0.087	0	0	9	0	0.0	0.0	0	0
	1	3	25	119	0.284	27	0.271	264	60	33.3	6.7	0.103	14.8
14/5	2	6	100	128	0.217	14	0.273	284	31	32.9	6.6	0.112	14.6
Ouerter	3	9	225	71	0.217	109	0.209	158	242	14.2	2.8	0.090	6.3
Quarter	4	12	400	15	0.165	20	0.194	33	44	35.1	7.0	0.091	15.6
Region	5	17	803	13	0.190	8	0.122	29	18	4.7	0.9	0.047	2.1
	6	22	1344	9	0 161	4	0.063	20	9	0.0	0.0	0	0

					Simulation			<u>Experiment</u>			
	Sample Layer Number	Grind Depth (mm)	Below Meniscus (mm)	Ca bu N _s	ptured ibble <i>Avg. d_i</i>	bubble #/100cm ²	bubl capt <i>N_E</i>	bles ured <i>N_e</i>	Average d _p (mm)	bubble #/100cm ² \overline{N}_{E}	
	1	3	25	107	0.221	155	59.0	11.8	0.103	17.1	
NF	2	6	100	134	0.207	194	51.1	10.2	0.072	14.8	
	3	9	225	184	0.211	266	42.1	8.4	0.075	12.2	
	4	12	400	206	0.198	298	69.7	13.9	0.096	20.2	
	5	17	803	54	0.180	78	0.0	0.0	0	0	
	6	22	1344	15	0.155	22	16.2	3.2	0.070	4.7	

Summary

Total injected particle is 51,660. 4,372 are captured by NF.

4,765 are captured by WF – O.R. 7,634 are captured by WF - I.R.

2,405 are captured by bottom.

32,408 escaped from top.

76 incomplete

Good trends Too many entrapped 30 Kai Jin .

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Number of bubbles captured, casting speed 1.5m/min, without EMBr, Adv. capture criterion

without EMBr, <u>Adv. capture criterion</u>													
	Lay	er Loc	ation	Simulation Result at WF						Experiment at WF			
	Sample Layer Number	Grind Depth (mm)	Below Meniscus (mm)	Captur	e bubble & Avg. d _o	N _s and O.R. #√	l Avg. d _p & Avg. d _p	Bubble I.R.	#/100cm ² O.R.	Bubb captu N _c	les red N.	Average d _p (mm)	Bubble #/100cm ² \overline{N}_{F}
	1	3	25	37	0.205	9	0.233	164	40	39.2	3.9	0.103	17.4
	2	6	100	57	0.193	10	0.183	253	44	41.0	4.1	0.126	18.2
Contor	3	9	225	17	0.207	4	0.200	75	17	26.8	2.7	0.081	11.9
Region	4	12	400	6	0.187	1	0.075	26	4	45.2	4.5	0.092	20.1
Region	5	17	803	6	0.175	0	0	26	0	9.5	0.9	0.047	4.2
	6	22	1344	2	0.075	0	0	8	0	0.0	0.0	0	0
	1	3	25	112	0.267	16	0.184	248	35	33.3	6.7	0.103	14.8
WE	2	6	100	170	0.213	17	0.199	377	37	32.9	6.6	0.112	14.6
Ouartor	3	9	225	80	0.204	91	0.199	177	202	14.2	2.8	0.090	6.3
Region	4	12	400	18	0.147	20	0.171	40	44	35.1	7.0	0.091	15.6
Region	5	17	803	18	0.153	5	0.165	40	11	4.7	0.9	0.047	2.1
	6	22	1344	13	0.152	4	0.163	29	8	0.0	0.0	0	0

				<u>Simulation</u>			<u>Experiment</u>								
	Sample Layer Number	Grind Depth (mm)	Below Meniscus (mm)	Ca bi N _s	ptured ubble <i>Avg. d</i>	bubble #/100cm ²	bubl capt <i>N_E</i>	bles ured <i>N_e</i>	Average d _p (mm)	bubble #/100cm ² \overline{N}_{E}	 51,660 6,235 2,912 	51,660 bubbles are injected 5,235 (12%) Captured by WF-IF 8,813 (7%) Captured by WF-C 8,141 (6%) Captured by NF 44.417 (67%) Escaped from mer			
NF	1	3	25	170	0.210	246	59.0	11.8	0.103	17.1	• 3,013				
	2	6	100	154	0.212	223	51.1	10.2	0.072	14.8	• 34.417				
	3	9	225	146	0.184	211	42.1	8.4	0.075	12.2	• 3,673	(7%)Trapped by b)Trapped by bottom		
	4	12	400	78	0.132	113	69.7	13.9	0.096	20.2	• 381	(1%) Incomplete			
	5	17	803	27	0.121	39	0.0	0.0	0	0					
	6	22	1344	20	0.185	29	16.2	3.2	0.070	4.7					
University of Illinois at Urbana-Champaign						• <i>Me</i>	tals Pro	cessing	g Simulation	n Lab		Kai Jin		32	

Hook formation: Possible reason for more bubble capture near meniscus

Capture of Large Bubbles

47,564 bubbles with d_p =1mm were injected and a summary of results are listed in the table below. Distribution of captured large bubbles are shown in next two slides.

Critorian	Freed	d		Capture	ed Bubble	s	Incomplete	Conture Data	<u># captured large bubble</u> # captured bubble total	
Criterion	Escaped	(mm)	Total	NF	WF-IR	WF-OR	Incomplete	Capture Rate		
Simple	44,760	1	2,749	201	2004	544	55	0.09%	$\frac{2749}{19,520}$ = 14%	
Adv.	47,499	1	43	8	33	2	22	6%	$\frac{43}{13,232} = 0.3\%$	
• <u>Relative Capture Rate</u> : plant measurement[6] shows that the captured large bubl $(d_p > 1mm)$ is <u>0.5%</u> (2 bubbles out of all bubbles).										

 <u>Large bubble capture location</u>: plant measurement[6] shows the distance of captured large bubbles are within 2mm from the outer surface which is no more than 1cm below meniscus. Advanced capture criterion also predict large bubbles got captured at the very top of the meniscus.

36

Conclusions

- The DPM simulation predicts similar fluid flow behavior in meniscus region as Eulerian/Mixture simulation that the 8%~10% Ar injection result in cross-flow in meniscus region; when compared with experiment, all these models underpredict the cross flow observed in Baosteel nailboard experiment. Possible reasons are that 1) the experiments are only rare snap shots of this transient process or 2) some other problems are occurring in the plant to cause the asymmetric flow, which are not included in the model;
- Simple capture criterion greatly (3 to 20 times) overpredicts the small argon bubbles trapped in the NF and WF shell; this demonstrates the large frequency of particles that touch the dendritic interface, and are washed away without being captured;
- Advanced capture criterion generally predicts similar number of bubbles trapped by WF as experiment measurements. However, it's slightly over predict the number of bubble captured at some region. Possible reason is k- ε model assumes isotropic turbulence which is not true at near wall region. The k- ε model overpredicts the number of bubbles that penetrate into the boundary layer. More bubbles are trapped by I.R. at region close to SEN; more bubbles are trapped by O.R. at region close to NF. This is likely due to the biased-flow effect of the slide gate on the swirling jet exiting the SEN ports, the captured Ar bubbles are not symmetric;
- The advanced capture criterion correctly predicts that bubbles larger then 1mm diameter are very difficult to be captured (capture rate less than 0.1%) and correctly predicted the location of where those

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Kai Jin	• 3
ol					
Atingous					
Casting Consortium					
	С	hapter 3			
		•			
	Darg	amotric Study			
	1 ard		y		

40

Casting Conditions, Boundary Conditions and Material Properties

Casting Conditions	Value	Properties	Steel	Ar
Mold Thickness	230 mm	Density (kg/m ³)	7,000	0.5
Mold Width	1300 mm	Viscosity (kg/m-s)	0.0063	2.12e-5
Submergence Depth	160/220 mm	Electrical Conductivity (S/m)	714,000 [3]	1.0e-15 ^[4]
Port Downward Angle	15/25 deg.	Magnetic Permeability (h/m)	1.26*10 ^{-6 [3]}	4π*10 ⁻⁷
Casting Speed	1.5 m/min			

Location	Boundary Condition
Inlet	V = 1.69 m/s
Outlet	Pressure 184kpa
Symmetry Plane	Symmetry
Top Surface (Meniscus)	No-slip wall; particle can escape;
NF and WF	No-slip wall; with steel mass & momentum sink; particle reflect
Other Places	No-slip wall; particle reflect;
University of Illinois at Urbana-Champaign	Metals Processing Simulation Lab Kai Jin 41

Simulations

Using Discrete Phase model.

Simulation No.	Mold Width (mm)	Nozzle Downward Angle (°)	Submergence Depth (mm)	Ar Gas Conditions (Mean Diameter, Volume Fraction)	EMBr Conditions (Amp)
1	230	15	165	No Ar Injection	No EMBr
2	230	15	165	No Ar Injection	T400B600
3	230	15	165	3mm, 8.2%	No EMBr
4	230	15	165	3mm, 8.2%	T400 B600**
5	230	15	210	3mm, 8.2%	No EMBr
6	230	25	165	3mm, 8.2%	No EMBr
7	230	25	165	3mm, 8.2%	T400 B600
8	230	25	210	3mm, 8.2%	T400 B600
9	230	15	165	3mm, <mark>16.4%</mark>	No EMBr
10	240	15	165	3mm, 8.2%	No EMBr

NOTE: 3mm means that the average bubble size is 3mm (not mean all bubble with constant diameter) bubble size distribution is Rosin-Rammler.

DPM Settings

Velocity at Center line and 1cm beneath Meniscus

Ar-bubble-3mm-10%-NoEMBr Eulerian Model

Ar-bubble-3mm-10%-NoEMBr Mixture Model

Experiment-w/Ar-NoEMBr

Red numbers are velocity magnitude obtained from Nailboard test (unit m/s)

Cyan arrows are the result of case 10 (casting speed 1.5m/min, Rosin-Rammlar bubble distribution with mean diameter 3mm).

Why not quite matching with experiment?

A possible reason is that only one measurement is available, but the flow in the mold is really a transient turbulent flow. The measurement is only a snapshot of the whole transient process, so it's really hard to match with that experiment.

Conclusions

- The Eulerian-Lagrangian method is able to predict the flow pattern including cross flow in the caster. But similar to the previous Eulerian and Mixture simulation, it cannot match exactly with the instantaneous plant measurements.(likely cause is too much variation between plant experiments snapshots, and average behavior that is modeled)
- Top surface velocity can be increased by:
 - 1) Reducing SEN downward angle;
 - 2) Turning off EMBr (upper ruler of FC mold);
 - 3) Decreasing submergence depth;
 - 4) Increasing Ar volume fraction (side effect of causing cross flow)
- By turning off the EMBr the maximum velocity on the top surface increases from 0.16 m/s to 0.3m/s which means that the top surface velocity can be increased by as much as 85%. The puts top surface velocity in 0.2-0.4 m/s range, so should be good for steel quality.[6]
- Regarding the effect of SEN downward angle, the simulations indicate that decreasing the SEN downward angle can help increasing the surface velocity. Under the condition that downward angle 25° and casting speed 1.5 m/s with EMBr T400B600, reducing the downward angle from 25° to 15° can cause the top surface velocity increase from 0.1m/s to 0.16m/s which correspond to a 60% increment.

48

- Current k-ε model with random walk tracking cannot accurately predict the particle motion when they come to the vicinity of wall, hence more accurate model (LES) may be implemented in the future;
- Recent studies[16] on particle-solidification front interactions shows that whether a particle/bubble can be captured by solidification front also greatly depend on the thermal conductivity of the particle and the solidifying medium, this dependence can be included in the future;
- The formula of lubrication force used in the advanced capture criterion was derived from spherical particle interact with planar solidifying front which may not be accurate in dendritic front case, the formula of this force might be improved;

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Baosteel (Prediction Measurement and Optimization of Mold Fluid Flow in Continuous Slab Casting with FC Mold at Baosteel, UIUC Research Project 2011-03313 C5241)
- Baosteel (plant data, including geometry, nailboard measurements, SVC measurements, particle measurements)
- ABB (EMBr magnetic field data)

University of Illinois at Urbana-Champaign •		Metals Processing Simulation Lab	•	Kai Jin	•	51