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Overall Objectives

• Improve understanding of fluid flow in the Baosteel slab-casting mold,
including the effect of EMBr;

• Develop off-line CFD model to accurately model multiphase fluid flow with
EMBr (prediction of flow pattern, surface velocity, etc.) and validate model
by comparing with measurements at Baosteel: nailboard velocity, and
bubble entrapment location;

• Study Ar gas bubble behavior: predict bubble trajectories and entrapment;

• Investigate effect of EMBr, Ar gas injection, submergence depth, SEN
downward angle and casting speed on mold flow pattern and top surface
velocity;

• Apply model to optimize EMBr operation in commercial slab casters,
evaluate the quality of flow pattern and provide suggestions regarding
operation;
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Chapter 1 – Experiments
(Bubble entrapment measurements at 

Baosteel)
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Methodology of Experiment
(Translation of Baosteel Bubble Summary Report[6])

• Casting Conditions as Table 1.

• Samples from middle WF, ¼ WF and
NF, as shown in Fig. 1.

• Milling off steel layer by layer.

• Use 35x optical microscope to
examine bubbles. Record bubble
number, distribution and size.

• Examine from 3 mm beneath the
outer surface, after that grinded off 3
mm each time until reached 12 mm;
change the grind step depth to 5 mm
and mill to 22 mm. 6 layers in total.
Shown in Table 2.

Table 1     Casting Conditions

Casting 
speed 

(m/min)

Cross 
Section

(mm)

EMBr
FC

Upper port Ar
injection
(L/min)

Upper Plate 
Ar injection

(L/min)

Submerged Port 
Ar injection 

(L/min)

1.2 230×1300
ON 25.9 7.8 4.1
OFF 30.2 5.7 4.1

1.5 230×1250
OFF 39.2 6.7 4.1
ON 39.2 6.7 4.1

Mill/Grind Depth
(mm)

Sample Layer 
Number

3 1
6 2
9 3

12 4
17 5
22 6

Table 2 Sample Mill depth and Associated layer number
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Experiment Result – Bubble Size (Translation of 
Baosteel Bubble Summary Report[6])

• In Experiment, observed bubble diameter
range from 0.05-1.45 mm.

• dp < 0.1 mm, 57%;

• 0.1mm < dp<0.3mm 42.5%;

• dp > 1mm 0.5% (2 bubbles, 1.45mm and
1mm)

• 2 bubbles larger than 1 mm. (1.45 mm
and 1.00 mm). (observed in metallographic
phase inclusion samples) casting conditions
are listed in Table 3.

• Bubble size distribution shown in Table 4.

Table 3 Casting conditions for bubbles with diameter larger than 1mm

Bubble size
Casting 
speed

EMBr Location
Distance 

From outer 
surface

1.45 1.5 OFF side <2mm

1 1.5 ON side <2mm

Table 4  Average bubble size and their location, μm

EMBr
Sample
Layer

Casting Speed 1.2m/min
Bubble Size (μm)

Casting Speed 1.5m/min
Bubble Size (μm)

1/2 1/4 Side 1/2 1/4 Side

FC 
OFF

1 98.67 104.90 113.90 103.48 103.48 103.48

2 97.33 106.40 136.60 126.50 111.60 72.50

3 90.66 86.44 87.50 81.15 90.110 75.88

4 77.46 92.48 99.60 92.92 91.30 96.80

5 0 63.00 63.00 47.00 47.00 0

6 0 0 0 0 0 70.50

FC 
ON

1 112.50 106.50 91.30 89.64 103.30 103.75

2 96.80 100.00 110.00 134.15 122.16 106.25

3 96.68 77.46 80.23 83.00 83.00 102.36

4 85.37 66.40 99.60 80.62 88.53 89.22

5 63.00 63.00 86.00 63.00 31.00 57.00

6 109.00 63.00 47.00 63.00 63.00 0

Mill/Grind Depth, mm Sample Layer Number

3 1
6 2
9 3

12 4
17 5
22 6

Table 2 Sample Mill depth and Associated layer number
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Experiment Result: Plot of Average Bubble Size vs. 
Distance beneath Outer Surface (all in one plot)

1. Most larger bubbles
(dp>100 μm) are in layers 1
and 2 (3-6mm).

2. Most medium size bubbles
(70 <dp <100 μm) are found
in layer 3 and 4 (8-12mm).

3. All small bubbles (dp<70
μm) are found in layer 5
and 6.
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• Entrapped bubble size decrease
with depth.

• Large bubbles entrapped closer
to meniscus. Fewer bubbles
penetrate.

• In general, small bubbles can
follow fluid flow and travel down.
They were entrapped at lower
position.
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Experiment Result: Plot of Average Bubble Size vs. 
Distance beneath Outer Surface (Separate Plot)

Average bubble Size for different Vc (red-1.5 and 1.2-green m/s) at different sample location 
with different FC condition (FC ON-open marker and FC OFF-solid marker)

With higher casting speed
(1.5m/s), the average bubble
size is slightly smaller at a
given depth.

But, considering the shell
thickness is less at higher
speed: bubble size is about
the same with distance
below meniscus (for different
speeds).(Brian G. Thomas,
Alex Dennisov, and Hua
Bai)[11]

WF-Center Region

WF-Center Region

WF-Quarter Region

WF-Quarter Region

NF

NF
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Results Summary: Bubble Number per 100cm2

vs. Distance beneath Outer Surface

1. More bubbles are found in
NF(side) than that in ½ and
¼ location. At the NF
surface more bubbles are
found in layer 1, 2 and 3,
which is above 20 bubbles
per 100cm2.

2. Number of entrapped
bubbles decreases with
depth.

3. Fewer bubbles entrapped
further below meniscus.

4. No bubble entrapped below
mold exit.
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Bubble Entrapment Depths at Inland

Casting speed vs. pencil pipe depth in slab and depth below meniscus
(Brian G. Thomas, Alex Dennisov, and Hua Bai, 1997 [14])
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Chemical element Weight% Atom%
C K 26.30 44.42
O K 25.75 32.65
Al K 7.42 5.58
Si K 7.33 5.29
Fe K 33.19 12.06

Inclusion Al2O3 SiO2

Chemical element Weight% Atom%

C K 18.94 38.89
O K 15.92 24.54
Al K 16.54 15.12
Fe K 48.59 21.46

Inclusion Al2O3

bubble with diameter 70μm bubble with diameter 1.45mm

Figure and data from Baosteel Bubble Summary Report

Figure and data from Baosteel Bubble Summary Report

Two Larger Entrapped bubbles 
(diameter 70μm and 1.45mm)
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Chapter 2 – Simulation
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Simulation Procedure

Two Steps

• A two-way coupled steady-state Eulerian-Lagrangian
simulation (with k-ε model) was perform using FLUENT
discrete phase model. This step is used to obtain the fluid
field solution.

• Then, particles are injected into the domain and their
trajectories are tracked. A stochastic model – Discrete
Random Walk model is added to compensate the effect of
turbulence dispersion of particles. There is no fluid iteration
during this step.
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Geometry and Boundary Conditions

Velocity inlet
Bubble injection
Ar volume fraction 8.2%

free slip wall; bubble escape;

No slip wall;
Steel Mom./Mass sink;

Bubble capture criterion

Pressure Outlet; Bubble captured;
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Location Boundary Condition

Inlet V = 1.69 m/s; 8.2% volume fraction of Ar

Outlet pressure 184kpa; particle captured;

Symmetry Plane Symmetry;

Meniscus free-slip wall; particle escape;

NF and WF no-slip wall; 
steel mass & momentum sink; 
particle capture criterion UDF;

SEN Walls no-slip wall; particle reflect;

3.
05

m

No-slip wall, bubble reflect
Bubble injection

0.23m

Casting Conditions Value

Mold Thickness 230 mm

Mold Width 1300 mm

Submergence Depth 160 mm

Port Downward Angle 15 deg.

Casting Speed 1.5 m/min

2.
5m

Casting Conditions

Boundary Conditions
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Solid Shell Model
• To avoid sharp shell tip, offset shell tip toward mold wall 

by 5mm.

• The shaded parts is the additional solid shell added 
into the domain.

• As a result, shell thickness at the region near the top 
surface is increased.

• Based on plant observation, shell thickness at the mold 
exit is around 19 mm, with casting speed 1.2 m/min.
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Mesh with Steel Shell in Domain
Structured hexahedron mesh created in ANSYS ICEMCFD 

~1.2 million elements

~1.2 million structured cells
½ (SEN +  Mold + Slide Gate + Steel Shell)

Block of solid shell are shown in green

Zoom In

Solid Shell5 mm

Meniscus View

Sym. Surface View
Smooth Shell

Slide 
GateWF

(solid shell)

SEN

C
er

am
ic

 w
al

l

Mesh Created in 
ANSYS ICEMCFD

WF
(solid shell)

Slide 
Gate
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Governing Equation For Fluid Flow
Steel and Ar Properties

• Continuity Equation

• Steel momentum equation

• Steady-State RANS Turbulence Model (k-ε)
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Properties Steel Ar

Density (kg/m3) 7,000 0.5

Viscosity (kg/m-s) 0.0063 2.12e-5

Electrical Conductivity (S/m) 714,000 [1] 1.0e-15 [2]

Magnetic Permeability (h/m) 1.26*10-6 [1] 4π*10-7
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Particle Tracking with Random Walk Model

Equation of Motion for Particles
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Discrete Random Walk Model

Gaussian distributed random velocity fluctuation, 
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   Momentum Exchange to Fluid
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How Many Particles Should be Injected

Parameters Values

Sample Length, ∆z 150mm

Slab Thickness, Ly 230mm

Slab Width, Lx 1300mm

Total Ar Volume Fraction at SEN, α 8.2%

Volume of Ar injected in half of the 
caster when cast ∆z length of slab, VAr

2.0×106mm3 1

1

2
x y
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L L z
V α
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Δ

⋅=
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i
i
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Vα
π
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There are 10 different groups of bubbles and each group
have the same diameter. Group i has diameter di, bubble
number Ni and volume fraction αi. i = 1,2,…,10. Then,
the particle number of Ni satisfy the equation:

½ due to only half caster 
in computational domain

How to determine the value of αi ?
Assume Ar bubble volume distribution satisfy the Rosin-Rammler distribution and the volume fraction of Ar
contained in the bubbles which have diameter less than di is defined by F(dp).
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Gas bubbles have diameter < 1mm have volume fraction        F(1) = 1%. 
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Bubble Distribution
As stated before, there are 2 Steps in the simulation:
1. Two-way coupled Eulerian-Lagrangian Simulation to obtain fluid field;
2. Particle are randomly released from inlet and the trajectories are tracked by using Random Walk Model.

In step – 1, two-way coupled simulation with 5 different groups of bubbles with diameter: 1, 2, 3, 4 and 5mm.

In step – 2, 10 different groups of bubbles are injected and tracked with diameter: 0.05, 0.075, 0.1, 0.2, 0.3, 
1, 2,  3, 4 and 5mm and their volume fraction satisfy the Rosin-Rammler distribution and are plotted in the 
figures above. 
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α is total Ar volume fraction at injection point whish is 8.2% in this case.
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List of Particles Injected in Post Particle 
Tracking Process 

• Ni and αi are calculated based on Rosin-Rammler given in the previous slide.

• The total number of bubbles need to be tracked is about 243,551 which is too large. So, the 
number of those larger bubbles(1mm to 5mm) are reduced by divide Ni by 10 (ni=Ni/10). The 
number of small bubbles are kept as ni=Ni.

• In later post processing, the number of tracked large bubbles will be multiply by 10.

i
Diameter 

di

(mm)

Volume per 
Bubble

in group i
(mm3)

Volume Fraction 
of Bubble in 

Group I
αi

Total Volume 
of Bubbles 
in Group i

(mm3)

Number
of Bubbles in 
Each Group

Ni

Number
of Bubbles 

Injected
ni

1 0.05 6.54E-05 6.40E-09 1.57E-01 2,393 2,393

2 0.075 2.21E-04 2.60E-08 6.36E-01 2,880 2,880

3 0.1 5.24E-04 7.00E-08 1.71E+00 3,272 3,272

4 0.2 4.19E-03 1.54E-06 3.76E+01 8,973 8,973

5 0.3 1.41E-02 6.66E-06 1.63E+02 11,521 11,521

6 1 5.24E-01 1.02E-03 2.49E+04 47,564 4,756

7 2 4.19E+00 1.39E-02 3.39E+05 80,911 8,091

8 3 1.41E+01 3.76E-02 9.19E+05 65,022 6,502

9 4 3.35E+01 2.70E-02 6.61E+05 19,714 1,971

10 5 6.54E+01 3.48E-03 8.52E+04 1,301 1,30

Total -- -- 0.082 2.03E+06 243,551 51,660

i in N=

10
i

i

N
n =
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How to Compare Simulation Result with 
Experiment Observation?

Step1 - Experiment

9 mm

Outer 
Surface
(NF)

Shell

Release bubbles and to see where they are captured.
Do post-processing at places of interest to get the
average bubble size and number of bubbles captured

Step 2 – Particles Captured in Simulation

zoom in
9mm

1.5cm

1.5cm

Count number of bubbles trapped on the surface 
represented by the green line. Then compute the 
average bubble size and bubble number per unit area

An assumption is that the green dashed line can represent the yellow line.

Similar work can be done on wide surface. The width of the sample equal to the sample width.
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Count Average 
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How to Compare Simulation Results with 
Experimental Results

Data available from experiment? ---- Number of bubble captured per 100cm2 at each experimental sample layer.

Data available from simulations? ---- Number of bubble captured at each simulation sample layer.

WF – Center Region WF – Quarter Region NF

Sample Size in Experiment Sample Size in Simulation

150mm 150mm 230mm
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Two Different Capture Models
• Simple capture criterion (touch=capture) is used at beginning. Particles (bubbles) are captured when

they touch NF or WF.

• Advanced capture criterion is implemented and the criterion is described both in Quan Yuan’s PhD
thesis (2004)[7] and Sana Mahmood’s Master thesis (2006)[8]. A flow chart of capture criterion is given
in figure below. PDAS used in the criterion is obtained from Sana Mahmood’s Master thesis (2006)[8] as
well.

Advanced Capture Criterion (Figure from Sana Mahmood, Master thesis, 
2006[8])

PDAS vs. Distance below meniscus (Figure from Sana 
Mahmood, Master thesis, 2006[8])
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Forces Related to Capture Criterion

Theoretical solidification velocity is used on NF/WF
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Interfacial gradient force push particle toward solidification front

Buoyancy force pointing upward
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Forces on particles [7,8]:
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Fluid Field Solution
Contour of Velocity Magnitude

Contour Plot of Velocity 
Magnitude (m/s)

Left top and Left bottom:
meniscus and middle 
plane

Middle:
SEN Symmetric plane

Right:
Port (look into SEN)
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Velocity at Center line in 
Meniscus Surface

• DPM simulation predict a close shape of Vx but the predicted Vx value is larger than the experiment. Possible 
reason might be that the casting speed in this simulation is 1.5m/s but in the experiment it was 1.2m/s.

• Regarding the cross flow velocity, all simulations under predict the cross flow speed. The possible reason is 
the flow is transient but the experimental data is only one snap shot.

2012 CCC
K.Jin and Z.J. Fan[9]
Vc = 1.2m/s

2012 CCC
K.Jin and Z.J.Fan[9]
Vc = 1.2m/s
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Comparison of Velocity at Center 
line of Meniscus 

X (m)

Z
(m

)

0 0.2 0.4 0.6

-0.1

0

0.1

0.2

0.23 0.23 0.31 0.28 0.28 0.31 0.23 0.23

10% Ar, dp = 3mm, Eulerian Model, 
Vc = 1.2m/s

Experiment: with Ar injection ~10%, 
Vc = 1.2m/s

Red numbers are velocity magnitude obtained 
from Nailboard test (unit m/s)

10% Ar, dp = 3mm, Mixture Model, 
Vc = 1.2m/s

Increasing casting speed (by 25%) should increase surface velocities(by 25%), which seems to roughly be the 
case, considering the minor changes due to bubble size differences.

Possible reasons for simulation not matching with the experiments is that the process is transient, but the 
experiment is only one snapshot.

Current Work: 8.2% Ar, Rosin-Ramler with 
mean dp = 3mm, Discrete Phase Model,
Vc = 1.5m/s
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Study the Effect of Capture Criterion
4 Post Particle Track Are Performed

• 4 post particle track simulations are done.

Case NO. of bubble Injected Bubble Size Distribution Capture Criterion on NF/WF

1 51,660 Constant dp 1mm Simple Capture

2 51,660 Constant dp 1mm Adv. Capture

3 47,564 Rosin-Rammler, mean dp 3mm Simple Capture

4 47,564 Rosin-Rammler, mean dp 3mm Adv. Capture

Particle Number and Size for Post Particle Track Simulations 

Fluid field solution for the both cases are the same, Vc=1.5m/s, Ar gas volume
fraction is 8.2%, all simulations performed on the same grid with ~1.2 million cells.
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Bubbles Captured by NF and WF with
Simple Capture Criterion
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Diameter
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Diameter

(µm)

Layer 1
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Center
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Region 4,372

Bubbles
Captured

8% of all 
injected 
bubbles

4,765
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bubbles

7,634
Bubbles
Captured

14% of all 
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Number of bubbles captured, casting speed 1.5m/min, 
without EMBr, simple capture criterion

Simulation Experiment

NF

Sample
Layer 

Number

Grind 
Depth 
(mm)

Below
Meniscus

(mm)

Captured 
bubble

Ns Avg. dp

bubble 
#/100cm2

bubbles 
captured
NE Ne

Average
dp

(mm)

bubble 
#/100cm2

1 3 25 107 0.221 155 59.0 11.8 0.103 17.1

2 6 100 134 0.207 194 51.1 10.2 0.072 14.8

3 9 225 184 0.211 266 42.1 8.4 0.075 12.2

4 12 400 206 0.198 298 69.7 13.9 0.096 20.2

5 17 803 54 0.180 78 0.0 0.0 0 0

6 22 1344 15 0.155 22 16.2 3.2 0.070 4.7

Layer Location Simulation Result at WF Experiment at WF

Sample
Layer 

Number

Grind 
Depth
(mm)

Below
Meniscus

(mm)

Capture bubble  Ns and Avg. dp Bubble #/100cm2

I.R.      O.R.

Bubbles 
captured

NE Ne

Average dp

(mm)

Bubble
#/100cm2 

I.R. # & Avg. dp O.R. # & Avg. dp

WF
Center
Region

1 3 25 29 0.304 6 0.275 129 27 39.2 3.9 0.103 17.4
2 6 100 72 0.343 6 0.229 320 27 41.0 4.1 0.126 18.2
3 9 225 19 0.195 7 0.196 84 31 26.8 2.7 0.081 11.9
4 12 400 4 0.138 2 0.250 18 9 45.2 4.5 0.092 20.1
5 17 803 2 0.150 6 0.133 9 27 9.5 0.9 0.047 4.2
6 22 1344 2 0.087 0 0 9 0 0.0 0.0 0 0

WF
Quarter
Region

1 3 25 119 0.284 27 0.271 264 60 33.3 6.7 0.103 14.8
2 6 100 128 0.217 14 0.273 284 31 32.9 6.6 0.112 14.6
3 9 225 71 0.217 109 0.209 158 242 14.2 2.8 0.090 6.3
4 12 400 15 0.165 20 0.194 33 44 35.1 7.0 0.091 15.6
5 17 803 13 0.190 8 0.122 29 18 4.7 0.9 0.047 2.1
6 22 1344 9 0.161 4 0.063 20 9 0.0 0.0 0 0

Summary
• Total injected particle is 51,660.
• 4,372 are captured by NF.
• 4,765 are captured by WF – O.R.
• 7,634 are captured by WF – I.R.
• 2,405 are captured by bottom.
• 32,408 escaped from top.
• 76 incomplete

EN

EN

Good trends
Too many entrapped
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Bubbles Captured by NF and WF
k-ε Model with Solidification from Theoretical Solution
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Layer 6
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Captured

6% of all 
injected 
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3,813
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7% of all 
injected 
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12% of all 
injected 
bubbles
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Number of bubbles captured, casting speed 1.5m/min, 
without EMBr, Adv. capture criterion

Simulation Experiment

NF

Sample
Layer 

Number

Grind 
Depth 
(mm)

Below
Meniscus

(mm)

Captured 
bubble

Ns Avg. dp

bubble 
#/100cm2

bubbles 
captured
NE Ne

Average
dp

(mm)

bubble 
#/100cm2

1 3 25 170 0.210 246 59.0 11.8 0.103 17.1

2 6 100 154 0.212 223 51.1 10.2 0.072 14.8

3 9 225 146 0.184 211 42.1 8.4 0.075 12.2

4 12 400 78 0.132 113 69.7 13.9 0.096 20.2

5 17 803 27 0.121 39 0.0 0.0 0 0

6 22 1344 20 0.185 29 16.2 3.2 0.070 4.7

Layer Location Simulation Result at WF Experiment at WF

Sample
Layer 

Number

Grind 
Depth
(mm)

Below
Meniscus

(mm)

Capture bubble  Ns and Avg. dp Bubble #/100cm2

I.R.      O.R.

Bubbles 
captured

NE Ne

Average dp

(mm)

Bubble
#/100cm2 

I.R. # & Avg. dp O.R. # & Avg. dp

WF
Center
Region

1 3 25 37 0.205 9 0.233 164 40 39.2 3.9 0.103 17.4
2 6 100 57 0.193 10 0.183 253 44 41.0 4.1 0.126 18.2
3 9 225 17 0.207 4 0.200 75 17 26.8 2.7 0.081 11.9
4 12 400 6 0.187 1 0.075 26 4 45.2 4.5 0.092 20.1
5 17 803 6 0.175 0 0 26 0 9.5 0.9 0.047 4.2
6 22 1344 2 0.075 0 0 8 0 0.0 0.0 0 0

WF
Quarter
Region

1 3 25 112 0.267 16 0.184 248 35 33.3 6.7 0.103 14.8
2 6 100 170 0.213 17 0.199 377 37 32.9 6.6 0.112 14.6
3 9 225 80 0.204 91 0.199 177 202 14.2 2.8 0.090 6.3
4 12 400 18 0.147 20 0.171 40 44 35.1 7.0 0.091 15.6
5 17 803 18 0.153 5 0.165 40 11 4.7 0.9 0.047 2.1
6 22 1344 13 0.152 4 0.163 29 8 0.0 0.0 0 0

EN

EN

• 51,660 bubbles are injected
• 6,235   (12%) Captured by WF-IR
• 3,813     (7%) Captured by WF-OR
• 3,141 (6%) Captured by NF
• 34,417 (67%) Escaped from meniscus
• 3,673 (7%)Trapped by bottom
• 381        (1%) Incomplete
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Compare Simulation Result with 
Experiment Result

Simple capture criterion
greatly over predict the
number of bubble that
captured.

Adv. capture criterion
predict captured a result
is twice larger than the
experiment result.

Note: the diameter of
the bubble found in
experiment of a 2D slice
is converted to 3D size
following procedure
proposed by Simon N.
Lekaka, etc. [15]
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Hook formation: Possible reason for more 
bubble capture near meniscus

1) Meniscus freezing
2) Meniscus overflow

Figures from AK. Thomas & B.G. Thomas, 2010; J. Sengupta, H. Shin, BG Thomas, et al, Met Trans B, 2006

Level Drop Video
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Deep hooks trap particles

Figure from J.P. Birat et al, IRSID, Malzieres-les-
Metz, France, in Mold Operation for Quality and 
Productivity, ISS, 1991, p.8
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Capture of Large Bubbles
• 47,564 bubbles with dp=1mm were injected and a summary of results are listed in the table

below. Distribution of captured large bubbles are shown in next two slides.

Criterion Escaped
dp

(mm)

Captured Bubbles
Incomplete Capture Rate

Total NF WF-IR WF-OR

Simple 44,760 1 2,749 201 2004 544 55 0.09% = 14%

Adv. 47,499 1 43 8 33 2 22 6% = 0.3%

• Relative Capture Rate: plant measurement[6] shows that the captured large bubbles
(dp>1mm) is 0.5% (2 bubbles out of all bubbles).

• Large bubble capture location: plant measurement[6] shows the distance of captured large
bubbles are within 2mm from the outer surface which is no more than 1cm below meniscus.
Advanced capture criterion also predict large bubbles got captured at the very top of the
meniscus.

# captured large bubble
# captured bubble total

2749
19,520

43
13,232

compare simulation with measurement
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Conclusions
• The DPM simulation predicts similar fluid flow behavior in meniscus region as Eulerian/Mixture

simulation that the 8%~10% Ar injection result in cross-flow in meniscus region; when compared with
experiment, all these models underpredict the cross flow observed in Baosteel nailboard experiment.
Possible reasons are that 1) the experiments are only rare snap shots of this transient process or 2)
some other problems are occurring in the plant to cause the asymmetric flow, which are not included in
the model;

• Simple capture criterion greatly (3 to 20 times) overpredicts the small argon bubbles trapped in the NF
and WF shell; this demonstrates the large frequency of particles that touch the dendritic interface, and
are washed away without being captured;

• Advanced capture criterion generally predicts similar number of bubbles trapped by WF as experiment
measurements. However, it’s slightly over predict the number of bubble captured at some region.
Possible reason is k-ε model assumes isotropic turbulence which is not true at near wall region. The k-ε
model overpredicts the number of bubbles that penetrate into the boundary layer. More bubbles are
trapped by I.R. at region close to SEN; more bubbles are trapped by O.R. at region close to NF. This is
likely due to the biased-flow effect of the slide gate on the swirling jet exiting the SEN ports, the
captured Ar bubbles are not symmetric;

• The advanced capture criterion correctly predicts that bubbles larger then 1mm diameter are very
difficult to be captured (capture rate less than 0.1%) and correctly predicted the location of where those
large bubbles will be captured. The bubble sizes predicted by this criterion generally match the
measurements, and the observed trend of decreasing size with distance below meniscus is also
matched.
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Chapter 3

Parametric Study
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Casting Conditions, Boundary 
Conditions and Material Properties

Location Boundary Condition

Inlet V = 1.69 m/s

Outlet Pressure 184kpa

Symmetry Plane Symmetry

Top Surface (Meniscus) No-slip wall; particle can escape;

NF and WF No-slip wall; with steel mass & momentum sink; particle reflect

Other Places No-slip wall; particle reflect;

Casting Conditions Value

Mold Thickness 230 mm

Mold Width 1300 mm

Submergence Depth 160/220 mm

Port Downward Angle 15/25 deg.

Casting Speed 1.5 m/min

Properties Steel Ar

Density (kg/m3) 7,000 0.5

Viscosity (kg/m-s) 0.0063 2.12e-5

Electrical Conductivity (S/m) 714,000 [3] 1.0e-15 [4]

Magnetic Permeability (h/m) 1.26*10-6 [3] 4π*10-7

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kai Jin • 42

Simulations

Simulation
No.

Mold Width
(mm)

Nozzle
Downward Angle 

(º)

Submergence
Depth
(mm)

Ar Gas 
Conditions

(Mean Diameter,
Volume Fraction)

EMBr Conditions
(Amp)

1 230 15 165 No Ar Injection No EMBr

2 230 15 165 No Ar Injection T400B600

3 230 15 165 3mm, 8.2% No EMBr

4 230 15 165 3mm, 8.2% T400 B600**

5 230 15 210 3mm, 8.2% No EMBr

6 230 25 165 3mm, 8.2% No EMBr

7 230 25 165 3mm, 8.2% T400 B600

8 230 25 210 3mm, 8.2% T400 B600

9 230 15 165 3mm,16.4% No EMBr

10 240 15 165 3mm, 8.2% No EMBr

NOTE: 3mm means that the average bubble size is 3mm (not mean all bubble with constant diameter) bubble size 
distribution is Rosin-Rammler.

Using Discrete Phase model.
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DPM Settings

• Flow Rate of Ar 1.67*10-4 kg/s

• Rosin-Rammler Distribution:

– Min. Diameter(mm):     1

– Max. Diameter(mm): 5

– Mean Diameter(mm): 3

– Shape Parameter: 3.5

• Ar Volume Fraction 8.2%

( ) 1 exp
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Velocity at Center line and 1cm 
beneath Meniscus
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Red numbers are velocity magnitude 
obtained from Nailboard test (unit m/s)

Ar-bubble-3mm-10%-NoEMBr
Mixture Model

Cyan arrows are the result of case 10 (casting speed 1.5m/min, Rosin-Rammlar
bubble distribution with mean diameter 3mm).

Why not quite matching with experiment?
A possible reason is that only one measurement is available, but the flow in the 
mold is really a transient turbulent flow. The measurement is only a snapshot of 
the whole transient process, so it’s really hard to match with that experiment. 



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kai Jin • 45

Effect of EMBr
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Effect of Ar Injection
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DA15-T400B600-M16
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Effect of SEN Downward Angle
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Conclusions

• The Eulerian-Lagrangian method is able to predict the flow pattern including cross flow in
the caster. But similar to the previous Eulerian and Mixture simulation, it cannot match
exactly with the instantaneous plant measurements.(likely cause is too much variation
between plant experiments – snapshots, and average behavior that is modeled)

• Top surface velocity can be increased by:

1) Reducing SEN downward angle;

2) Turning off EMBr (upper ruler of FC mold);

3) Decreasing submergence depth;

4) Increasing Ar volume fraction (side effect of causing cross flow)

• By turning off the EMBr the maximum velocity on the top surface increases from 0.16 m/s
to 0.3m/s which means that the top surface velocity can be increased by as much as 85%.
The puts top surface velocity in 0.2-0.4 m/s range, so should be good for steel quality.[6]

• Regarding the effect of SEN downward angle, the simulations indicate that decreasing the
SEN downward angle can help increasing the surface velocity. Under the condition that
downward angle 25o and casting speed 1.5 m/s with EMBr T400B600, reducing the
downward angle from 25o to 15o can cause the top surface velocity increase from 0.1m/s
to 0.16m/s which correspond to a 60% increment.
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Future Work

• Current k-ε model with random walk tracking cannot accurately predict
the particle motion when they come to the vicinity of wall, hence more
accurate model (LES) may be implemented in the future;

• Recent studies[16] on particle-solidification front interactions shows that
whether a particle/bubble can be captured by solidification front also
greatly depend on the thermal conductivity of the particle and the
solidifying medium, this dependence can be included in the future;

• The formula of lubrication force used in the advanced capture criterion
was derived from spherical particle interact with planar solidifying front
which may not be accurate in dendritic front case, the formula of this
force might be improved;
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